EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-TR-213924

FYO05 Accomplishments for
Colony Project

Terry Jones, Laxmikant Kale, Jose Moreira

July 22, 2005

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Advanced Scientific Computing Research
Computer Science
FY 2005 Accomplishment

= Office of
i(// 4 Science

U.S. DEPARTMENT OF ENERGY

Colony — “Services and Interfaces to Support Large Numbers of Processors”
Terry Jones', Lawrence Livermore National Laboratory
Laxmikant Kale Umversr[y of Illinois at Urbana-Champaign
Jose Morelra International Business Machines
Celso Mendes, Un1vers1ty of Illinois at Urbana-Champaign
Sayantan Chakravorty, University of Illinois at Urbana-Champaign
Todd Inglett, International Business Machines
Andrew Tauferner, International Business Machines

Summary

The Colony Project is developing operating system and runtime system technology to enable
efficient general purpose environments on tens of thousands of processors. To accomplish
this, we are investigating memory management techniques, fault management strategies, and
parallel resource management schemes. Recent results show promising findings for scalable
strategies based on processor virtualization, in-memory checkpointing, and parallel aware
modifications to full featured operating systems.

It is an ironic twist that one of the most
beneficial trends in supercomputing is also
one of its greatest challenges. While the
trend towards larger processor counts
benefits application developers through
more processing power, it also challenges
application developers to harness ever-
increasing numbers of processors for
productive work. Much of the burden falls to
operating systems and runtime systems that
were originally designed for much smaller
processor counts. Under the Colony project,
we are researching and developing system
software to enable general purpose operating
and runtime systems for tens of thousands of
processors. These technologies will be
demonstrated on multiple platforms
including IBM’s Blue Gene class machines.

As machines become larger, system-wide
management of important resources across
the entire becomes increasingly important

for improving performance and scalability
of applications. Important examples include
CPU time and memory. Typically,
application programmers have to explicitly
write code to balance the use of these
resources. However, with larger processor
counts and more complex applications,
programmers are faced with an increasingly
difficult task in balancing resource usage.
Next generation parallel operating and
runtime systems must provide automatic
resource balancing. We are developing,
under Colony, an infrastructure and
strategies for automated resource
management by delegating low-level
management tasks to operating system and
runtime software. One impediment to
automated resource management is the
monolithic view of a process as an
indivisible unit. As an alternative, we
propose processor virtualization, in which a
parallel application is divided into much

Terry Jones, LLNL Principal Investigator, Telephone Number 925-423-9834, E-mail address trj@lInl.gov
Laxmlkant Kale UIUC Principal Investigator, Telephone Number 217-244-0094, E-mail address kale@cs.uiuc.edu
? Jose Moreira, IBM Principal Investigator, Telephone Number 507-253-6383, E-mail address moreira@us.ibm.com

smaller migratable work units (objects) such
as user-level threads and parallel objects.
These relatively fine-grained units make it
possible for the parallel operating system to
manage resources automatically, and
facilitate new fault-tolerance and job-
management strategies. We have
implemented this basic idea in Charm++ and
in AMPI, an MPI implementation based on
Charm++. This approach allows programs to
be created more efficiently, using less
programmer time and effort.

Without coordination in the memory
management system across a parallel
machine, concurrently allocated memory is
represented by different virtual addresses on
every task. By reserving and managing the
range of virtual address space across a
parallel machine at the operating system
level, we expect to reduce the overhead and
complexity of managing virtual memory in
large parallel systems.

As the number of processors in a parallel
system grows, the expected mean time
between failure shrinks and fault tolerance
becomes an important issue. We have now
demonstrated the effectiveness of a
sophisticated checkpoint/restart mechanism
where the checkpoints were saved in
memory, avoiding the wait for disk access.
Further, we have developed techniques that
enable the checkpoints to be created
automatically, with no additional user code.
Combined with automatic fault detection
and recovery, this forms a complete fault
recovery system. We are currently
developing a new mechanism for proactive
handling of impending faults, based on
object migration. Upon receiving a warning
of an imminent fault on a given processor,
our runtime system efficiently migrates
execution away from that processor.

The Colony project is also investigating and
developing and all-Linux solution for Blue
Gene. In addition to extending the spectrum

of applications for Blue Gene/L, this activity
will deliver a platform for studying extreme
scalability of Linux.

The use of Linux as the operating system for
Blue Gene compute nodes presents its own
challenges. First and foremost, there is the
issue of asynchronous and nondeterministic
behavior, often observed in server-grade
operating systems. How do we manage the
many sources of asynchronous events in
Linux (TLB misses, process/thread
scheduler, I/O events) so that they do not
impede scalability to tens of thousands of
processors? Our recent work has focused on
studying one particular source of
asynchronous events: the TLB misses
incurred by dynamic memory management.
Figure 1 shows the performance obtained by
Linpack running on 512 compute nodes for
different page sizes. Performance
degradation can be severe at usual Linux
page sizes (4kB), but it is negligible for
large pages.

Linpack on 512 nodes (CNK)

2.10

2.00

1.90

1.80 B |
1.70 | |
1.60 [| ||
1.50 LB] = P

No 1kB 4kB 16kB 64kB 256kB 1MB
TLB page page page page page page

Teraflops

Figure 1: Performance for different page sizes.

We conclude that the asynchronous events
caused by TLB management in Linux can be
a source of performance degradation, but
that we can address those problems by
running with larger pages. Additional
strategies are planned for other sources of
asynchronous events including both
process/thread scheduling and I/O events.

For further information on this subject contact:
Terry Jones, Coordinating PI

Lawrence Livermore National Laboratory
Email: trj@lInl.gov

Phone: 925-423-9834

Web: http://www.hpc-colony.org

